

Effectiveness of Influenza-Prevention Interventions among Healthcare Workers: A Systematic Review and Meta-Analysis of Health Outcomes

Ahmed Al Tamimi^{1*}, Saoud Al Tamimi², Khalifa Al Seiari², Rami H Alrifai³ and Susannah Fleming⁴

¹Kellogg College, University of Oxford, Oxford, UK

²College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

³Infectious Diseases Epidemiology Research Advancement (IDERA) Unit, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

⁴Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

***Correspondence:** Ahmed Al Tamimi, P O Box, 6810, Abu Dhabi, UAE, E-mail: altamimi@doctor.com;
DOI: <https://doi.org/10.56147/jidpc.2.2.18>

Citation: Al Tamimi A, Al Tamimi S, Al Seiari K, Alrifai RH, Fleming S (2025) Effectiveness of Influenza-Prevention Interventions among Healthcare Workers: A Systematic Review and Meta-Analysis of Health Outcomes. *J Infect Dis & Pati Care* 2: 18.

Received date: June 25, 2025; **Accepted date:** July 04, 2025; **Published date:** July 15, 2025

Supplementary Appendix

This appendix formed part of the original submission.

Methods appendix

A1. PI/ECO (population, intervention/exposure, comparison, and outcome).

Study population

We included studies if the population was Healthcare Workers (HCWs) working in hospitals or medical clinics. These include physicians, nurses, emergency medical personnel, dentists and students, medical and nursing students, laboratory technicians, pharmacists, hospital volunteers and administrative staff.

Intervention/exposure

The studies' inclusion criteria focused on two distinct types of interventions or exposures (pharmaceutical and non-pharmaceutical). The pharmaceutical interventions focused on influenza vaccination, which included both killed and live attenuated vaccines. For the nonpharmaceutical interventions, the wearing of face masks (medical, surgical, or N95 respirators) was the primary intervention studied.

Comparison

The comparison group consisted of studies that included the population that did not receive any pharmaceutical measures or were not exposed to the non-pharmaceutical measures against influenza.

Outcomes of interest

Studies were considered eligible if they addressed the effectiveness of any of the following: (1) Incidence of laboratory-confirmed influenza infections, (2) Incidence of influenza-like illness, and (3) Absenteeism from work.

Search Strategy

Pubmed

Search date: 30/09/2024.

Results: 801.

"Influenza vaccine*" OR "Influenza vaccination*" OR "Flu vaccine*" OR "Flu vaccination*" OR "Flu shot*" OR "Influenza shot*", ("Influenza Vaccines"[Mesh]), "facial mask*" OR "protective mask*" OR "mask protection" OR "facial protection" OR "face protection", "Respiratory Protective Devices"[Mesh], "Health care worker*" OR "Healthcare worker*" OR "Healthcare professional*" OR "Health care professional*", "Health Personnel"[Mesh:NoExp], Effective* OR efficacy OR impact* OR benefit* OR assessment OR evaluation, "Comparative Effectiveness Research"[Mesh], and outcome* OR absenteeism OR infection* OR episode* OR "laboratory-confirmedinfection*", "Patient Outcome Assessment"[MeAsh].

Scopus

Search date: 30/09/2024

Results: 194

(TITLE-ABS-KEY (effective* OR efficac* OR impact* OR outcome* OR benefit*) AND TITLE-ABS-KEY ("protective

measures" OR "protective interventions" OR "preventive measures" OR "safety measures") AND TITLE-ABS-KEY ("influenza vaccine" OR "flu vaccine" OR "influenza immunization" OR "flu shot") AND TITLE-ABS-KEY ("face mask" OR "surgical mask" OR respirator OR mask) AND TITLE-ABS-KEY ("healthcare workers" OR "healthcare professionals" OR "medical staff" OR "hospital staff" OR nurses OR doctors) AND TITLE-ABS-KEY ("laboratory confirmed influenza" OR "confirmed influenza" OR "lab confirmed influenza") AND TITLE-ABS-KEY ("influenza like illness" OR "ILI" OR "flu like illness" OR "influenza symptoms") AND TITLE-ABS-KEY ("days lost at work" OR absenteeism OR "work absence" OR "sick leave" OR "lost work days")

Google Scholar

Search date: 30/09/2024.

Results: 107.

"Influenza vaccine*" OR "Influenza vaccination*" OR "Flu vaccine*" OR "Flu vaccination*" OR "Flu shot*" OR "Influenza shot*", OR "facial mask*" OR "protective mask*" OR "mask protection" OR "facial protection" OR "face protection", AND "Health care worker*" OR "Healthcare worker*" OR "Healthcare professional*" OR "Health care professional*", AND Effective* OR efficacy OR impact* OR benefit* OR assessment OR evaluation, AND (outcome* OR absenteeism OR infection* OR "laboratory-confirmed-infection*")

Results Appendix

References of included studies

1. Amodio E, Anastasi G, Di Pasquale M, Gelsomino V, Morici M, Romano N, Torregrossa MV, Cannova L, Calamusso G, Firenze A. Influenza vaccination among healthcare workers and absenteeism from work due to influenza-like illness in a teaching hospital in Palermo. *Italian Journal of Public Health*. 2010 Sep 30;7(3).
2. Atamna Z, Chazan B, Nitzan O, Colodner R, Kfir H, Strauss M, Schwartz N, Markel A. Seasonal Influenza Vaccination Effectiveness and Compliance among Hospital Health Care Workers. *The Israel Medical Association journal: IMAJ*. 2016 Jan 1;18(1):5-9.
3. Barbara M, Hilde P, Samuel C, Fernande Y, Toon S, Sofie S, Joke D, Paul VR. The effect of giving influenza vaccination to general practitioners: a controlled trial [NCT00221676]. *BMC medicine*. 2006 Dec; 4:1-0. Chan AL, Shie HJ, Lee YJ, Lin SJ. The evaluation of free influenza vaccination in health care workers in a medical center in Taiwan. *Pharmacy World & Science*. 2008 Jan; 30:39-43.
4. Chan SS. Does vaccinating ED health care workers against influenza reduce sickness absenteeism? *The American journal of emergency medicine*. 2007 Sep 1;25(7):808-11.
5. Fujita Y, Okada T, Mugishima H, Kumasaka K, Sawa M, Tachihara S. Trial of influenza HA vaccination for healthcare workers in consecutive years. *Japanese journal of infectious diseases*. 2009 Nov 30;62(6):464-6.
6. Igari H, Watanabe A, Chiba H, Shoji K, Segawa S, Nakamura Y, Watanabe M, Suzuki K, Sato T. Effectiveness and safety of pandemic influenza A (H1N1) 2009 vaccine in healthcare workers at a university hospital in Japan. *Japanese Journal of Infectious Diseases*. 2011 May 31;64(3):177-82.
7. Ishikane M, Kamiya H, Kawabata K, Higashihara M, Sugihara M, Tabuchi A, Kuwabara M, Yahata Y, Yamagishi T, Odagiri T, Sugiki Y. Seasonal influenza vaccine (A/New York/39/2012) effectiveness against influenza A virus of health care workers in a long-term care facility attached with the hospital, Japan, 2014/15: A cohort study. *Journal of Infection and Chemotherapy*. 2016 Nov 1;22(11):777-9.
8. Ito Y, Kato T, Sumi H. Evaluation of influenza vaccination in health-care workers, using rapid antigen detection test. *Journal of infection and chemotherapy*. 2006 Jan 1;12(2):70-2.
9. Jaeger JL, Patel M, Dharan N, Hancock K, Meites E, Mattson C, Gladden M, Sugerman D, Doshi S, Blau D, Harriman K. Transmission of 2009 pandemic influenza A (H1N1) virus among healthcare personnel—Southern California, 2009. *Infection Control & Hospital Epidemiology*. 2011 Dec;32(12):1149-57.
10. Kheok SW, Chong CY, McCarthy G, Lim WY, Goh KT, Razak L, Tee NS, Tambyah PA. The efficacy of influenza vaccination in healthcare workers in a tropical setting: a prospective investigator blinded observational study. *ANNALS-ACADEMY OF MEDICINE SINGAPORE*. 2008 Jun 1;37(6):465.
11. Lester RT, McGeer A, Tomlinson G, Detsky AS. Use of, effectiveness of, and attitudes regarding influenza vaccine among house staff. *Infection Control & Hospital Epidemiology*. 2003 Nov;24(11):839-44.
12. MacIntyre CR, Seale H, Dung TC, Hien NT, Nga PT, Chughtai AA, Rahman B, Dwyer DE, Wang Q. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. *BMJ open*. 2015 Apr 1;5(4):e006577.
13. Ng TC, Lee N, Hui SC, Lai R, Ip M. Preventing healthcare workers from acquiring influenza. *Infection Control & Hospital Epidemiology*. 2009 Mar;30(3):292-5.
14. Njuguna H, Ahmed J, Oria PA, Arunga G, Williamson J, Kosgey A, Muthoka P, Mott JA, Breiman RF, Katz MA. Uptake and effectiveness of monovalent influenza A (H1N1) pandemic 2009 vaccine among healthcare personnel in Kenya, 2010. *Vaccine*. 2013 Sep 23;31(41):4662-7.
15. Panatto D, Lai PL, Mosca S, Lecini E, Orsi A, Signori A, Castaldi S, Pariani E, Pellegrinelli L, Galli C, Anselmi G. Influenza vaccination in italian healthcare workers (2018-2019 season): Strengths and weaknesses. results of a cohort study in two large italian hospitals. *Vaccines*. 2020 Mar 5;8(1):119.
16. Saxen H, Virtanen M. Randomized, placebo-controlled double blind study on the efficacy of influenza immunization on absenteeism of health care workers. *The Pediatric infectious disease journal*. 1999 Sep 1;18(9):779-83.
17. Toyokawa T, Sunagawa T, Yahata Y, Ohyama T, Kodama T, Satoh H, Ueno-Yamamoto K, Arai S, Araki K, Odaira F, Tsuchihashi Y. Seroprevalence of antibodies to pandemic (H1N1) 2009 influenza virus among health care workers in two general hospitals after first outbreak in Kobe, Japan. *Journal of Infection*. 2011 Oct 1;63(4):2817.
18. Weingarten S, Staniloff H, Ault M, Miles P, Bamberger M, Meyer RD. Do hospital employees benefit from the influenza vaccine? A placebo-controlled clinical trial. *Journal of General*

Internal Medicine. 1988 Jan;3:32-37.

19. Wilde JA, McMillan JA, Serwint J, Butta J, O'Riordan MA, Steinhoff MC. Effectiveness of influenza vaccine in health care professionals: a randomized trial. *Jama*. 1999 Mar 10;281(10):908-13.

20. Zaffina S, Gilardi F, Rizzo C, Sannino S, Brugaletta R, Santoro A, Castelli Gattinara G, Ciofi degli Atti ML, Raponi M, Vinci MR. Seasonal influenza vaccination and absenteeism in healthcare workers in two subsequent influenza seasons (2016/17 and 2017/18) in an Italian pediatric hospital. *Expert Review of Vaccines*. 2019 Apr 3;18(4):411-8.

List of excluded studies with reasons

Table B2: List of excluded studies with reasons.

No.	Study name	Reason for exclusion	Citation
1	Colombo et al. (2006)	Different setting	Not a hospital
2	Susa et al. (2000)	Non-English study	-
3	Liu et al (2005)	Non-English study	-
4	Hui et al (2008)	Different setting	Faculty of dentistry in a university
5	Nishi et al (2001)	Non-English study	
6	Murti et al. (2019)	Inapplicable study design	Case-control study
7	Rizzuto et al. (2006)	Different setting	Italian MoH
8	Al Qahtani et al. (2021)	Inapplicable study design	Case-control study
9	Keitel et al. (1997)	Different population	Not HCWs
10	Jones (1999)	Incomplete data	No SD
11	Mitchell et al. (1999)	Incomplete data	Data can't be extracted
12	Mostow et al. (1977)	Non-comparable interventions	compared split to whole influenza vaccine
13	Harada et al. (2003)	Non-English study	-
14	Loeb et al. (2009)	Non-comparable interventions	compared surgical mask to N95
15	MacIntyre et al. (2015)	Non-comparable interventions	compared cloth masks to medical masks
16	MacIntyre et al. (2014)	Other	Not influenza virus specifically
17	Ritsuko et al. (2001)	Non-English study	-

18	Gianino et al. (2017)	Incomplete data	No SD
19	Costa et al. (2012)	Other	two influenza vaccines in a raw in a pandemic season
20	Cheng et al. (2010)	Different population	data include merged data for HCWs and patient's
21	Jacobs et al (2009)	Incomplete data	Incomplete data, definition of ILI is lacking

References of excluded studies

1. Al Qahtani AA, Selim M, Hamouda NH, Al Delamy AL, Macadangdang C, Al Shammari
2. KH, Al Shamary SF. Seasonal influenza vaccine effectiveness among health-care workers in Prince Sultan Military Medical City, Riyadh, KSA, 2018–2019. *Human vaccines & immunotherapeutics*. 2021 Jan 2;17(1):119-23.
3. Cheng VC, Tai JW, Wong LM, Chan JF, Li IW, To KK, Hung IF, Chan KH, Ho PL, Yuen
4. KY. Prevention of nosocomial transmission of swine-origin pandemic influenza virus
5. A/H1N1 by infection control bundle. *Journal of Hospital Infection*. 2010 Mar 1;74(3):271-7.
6. Colombo GL, Ferro A, Vinci M, Zordan M, Serra G. Cost-benefit analysis of influenza vaccination in a public healthcare unit. *Therapeutics and clinical risk management*. 2006 Jun 30;2(2):219-26.
7. Costa JT, Silva R, Tavares M, Nienhaus A. High effectiveness of pandemic influenza A (H1N1) vaccination in healthcare workers from a Portuguese hospital. *International archives of occupational and environmental health*. 2012 Oct;85:747-52.
8. Gianino MM, Politano G, Scarmozzino A, Charrier L, Testa M, Giacomelli S, Benso A, Zotti CM. Estimation of sickness absenteeism among Italian healthcare workers during seasonal influenza epidemics. *PloS one*. 2017 Aug 9;12(8):e0182510.
9. Harada H, Kobayashi T, Wakamoto Y, Takita S, Sugiyama S, Kunitsugu I, Okuda M, Houbara T. The efficacy and problems with influenza vaccination among hospital workers. [Nihon Koshu Eisei Zasshi] *Japanese Journal of Public Health*. 2003 Jun 1;50(6):547-52.
10. Hui LS, Rashwan H, bin Jaafar MH, Hussaini HM, Isahak DI. Effectiveness of influenza vaccine in preventing influenza-like illness among Faculty of Dentistry staff and students in Universiti Kebangsaan Malaysia. *Healthcare Infection*. 2008 Mar 1;13(1):4-9.
11. Jacobs JL, Ohde S, Takahashi O, Tokuda Y, Omata F, Fukui T. Use of surgical face masks to reduce the incidence of the common cold among health care workers in Japan: a randomized controlled trial. *American journal of infection control*. 2009 Jun 1;37(5):417-9.
12. Jones C. Influenza vaccination: impact on absenteeism among nursing and medical staff in a metropolitan teaching hospital. *Australian Infection Control*. 1999 Sep 1;4(3):14-7.
13. Keitel WA, Cate TR, Couch RB, Huggins LL, Hess KR. Efficacy

of repeated annual immunization with inactivated influenza virus vaccines over a five-year period. *Vaccine*. 1997 Jul 1;15(10):1114-22.

14. Liu M, Liu GF, Zhao W. An effect and cost-benefit analysis of influenza vaccine among the healthcare worker. *Chin Gen Pract*. 2006;9(9):708-11.

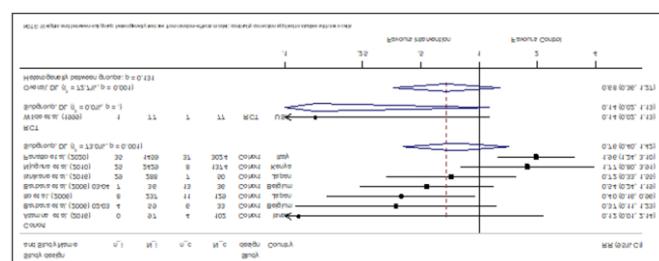
15. Loeb M, Dafoe N, Mahony J, John M, Sarabia A, Glavin V, Webby R, Smieja M, Earn DJ, Chong S, Webb A. Surgical mask vs N95 respirator for preventing influenza among health care workers: a randomized trial. *Jama*. 2009 Nov 4;302(17):1865-71.

16. MacIntyre CR, Seale H, Dung TC, Hien NT, Nga PT, Chughtai AA, Rahman B, Dwyer DE, Wang Q. A cluster randomised trial of cloth masks compared with medical masks in healthcare workers. *BMJ open*. 2015 Apr 1;5(4):e006577.

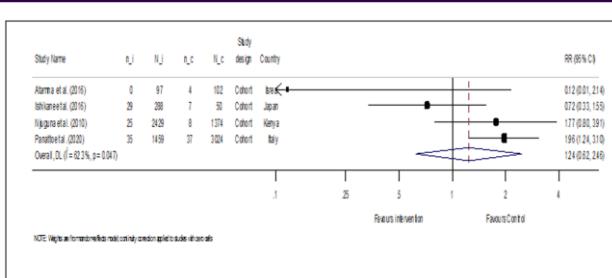
17. MacIntyre CR, Wang Q, Rahman B, Seale H, Ridda I, Gao Z, Yang P, Shi W, Pang X, Zhang Y, Moa A. Efficacy of face masks and respirators in preventing upper respiratory tract bacterial colonization and co-infection in hospital healthcare workers. *Preventive medicine*. 2014 May 1;62:1-7.

18. Mitchell P, Cuddeford G, Thomson P. Hospital staff absenteeism following an influenza immunization program. *Journal of Occupational Health and Safety, Australia and New Zealand*. 1999 Jun;15(3):231-42.

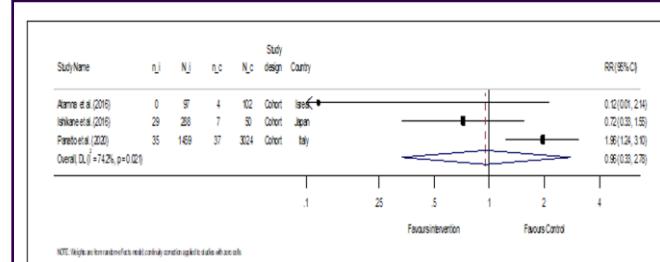
19. Mostow SR, Eickhoff TC, Chelgren GA, Retaillau HF, Castle M. Studies of inactivated influenza virus vaccines in hospital employees: reactogenicity and absenteeism. *Journal of Infectious Diseases*. 1977 Dec 1;136(Supplement_3):S533-8.

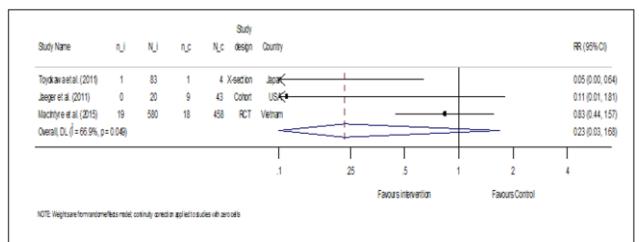

20. Murti M, Otterstatter M, Orth A, Balshaw R, Halani K, Brown PD, Hejazi S, Thompson D, Allison S, Bharmal A, Dawar M. Measuring the impact of influenza vaccination on healthcare worker absenteeism in the context of a province-wide mandatory vaccine-or-mask policy. *Vaccine*. 2019 Jul 9;37(30):4001-7.

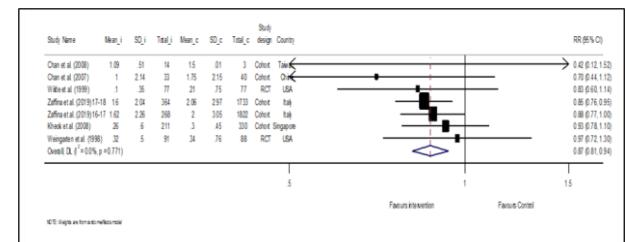
21. Nishi K, Mizuguchi M, Ueda A. Effectiveness of influenza vaccine in health-care workers. *Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases*. 2001 Oct 1;75(10):851-5.

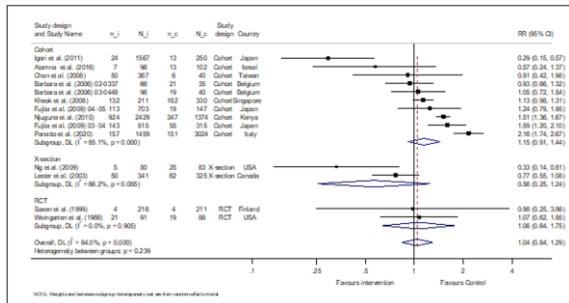

22. Rizzuto E, Prete AM, Virtuani L, Pompa MG. Effectiveness of influenza vaccination: a survey within the Italian Ministry of Health personnel. *Vaccine*. 2006 Nov 10;24(4446):6612-4.

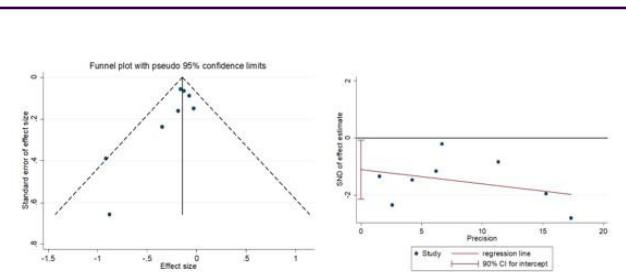
23. Susa R, Fuse K, Ishizawa M, Nakamata M, Tsukada H, Gejyo F. Effectiveness of influenza vaccine in hospital workers. *Environmental Infections*. 2001 Dec 7;16(4):303-8.


Meta-analyses forest plots


Figure S1: Forest plot of incidence of laboratory-confirmed influenza (LCI) in vaccinated vs. non-vaccinated healthcare workers sub-grouped by study design, n_i : Number of HCWs with LCI in the intervention group, N_i : Total number of HCWs in the intervention arm, n_c : Number of HCWs with LCI in the comparator group, N_c : Total number of HCWs in the comparator arm, RR: Risk Ratio.


Figure S2: Forest plot of incidence of Laboratory-Confirmed Influenza (LCI) in vaccinated vs. non-vaccinated healthcare workers after removing studies prior to 2010, n_i : Number of HCWs with LCI in the intervention group, N_i : Total number of HCWs in the intervention arm, n_c : Number of HCWs with LCI in the comparator group, N_c : Total number of HCWs in the comparator arm, RR: Risk Ratio.


Figure S3: Forest plot of incidence of Laboratory-Confirmed Influenza (LCI) in vaccinated vs. non-vaccinated healthcare workers after removing studies prior to 2015, n_i : Number of HCWs with LCI in the intervention group, N_i : Total number of HCWs in the intervention arm, n_c : Number of HCWs with LCI in the comparator group, N_c : Total number of HCWs in the comparator arm, RR: Risk Ratio.


Figure S4: Forest plot of incidence of Laboratory-Confirmed Influenza (LCI) in the mask-users vs. non-mask-users healthcare workers, n_i: Number of HCWs with LCI in the intervention group, N_i: Total number of HCWs in the intervention arm, n_c: Number of HCWs with LCI in the comparator group, N_c: Total number of HCWs in the comparator arm, RR: Risk Ratio.

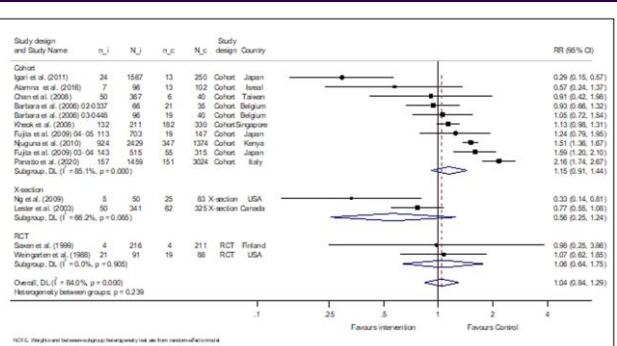

Figure S7: Forest plot of the incidence of absenteeism from work among vaccinated vs. non-vaccinated healthcare workers, Mean_i: Events mean in the intervention arm, SD_i: Standard deviation of the events in intervention arm, Total_i: Total number of participants in the intervention arm, Mean_c: Events mean in the comparator arm, SD_c: Standard deviation of the events in the comparator arm, Total_c: Total number of participants the comparator arm, RR: Risk Ratio.

Figure S5: Forest plot of the incidence of Influenza-Like Illness (ILI) among vaccinated vs. non-vaccinated healthcare workers sub-grouped by study type, n_i: Number of HCWs with ILI in the intervention group, N_i: Total number of HCWs in the intervention arm, n_c: Number of HCWs with ILI in the comparator group, N_c: Total number of HCWs in the comparator arm, RR: risk ratio.

Figure S8: Funnel plot and Egger test of influenza vaccine and days off work.

Figure S6: Forest plot of the incidence of incidence Influenza-Like Illness (ILI) among vaccinated vs. non-vaccinated healthcare workers sub-grouped by study sample size, n_i: Number of HCWs with ILI in the intervention group, N_i: Total number of HCWs in the intervention arm, n_c: Number of HCWs with ILI in the comparator group, N_c: Total number of HCWs in the comparator arm, RR: Risk Ratio.